
Data Recovery

Logical Recovery
Chapter 4
Written By

Ann LeFlore

What is Logical Recovery

• Logical recovery includes rebuilding files that have been
corrupted by user or virus attacks, recover data from
HDD with bad sectors, file deletion, partition deletion,
and problems with the OS.

• File recovery: large files are allocated consecutive
clusters DR software can rebuild the files with out the
FAT or NTSF entry. Files are fragmented due to large
size. Most files are assigned consecutive cluster.

• Large files such as databases, email, large text
documents are easily fragmented due to their size.

• When file allocation has been overwritten by another file
it is practically impossible to recovery data from these
files. One possibility to recover files is the advanced
technology MFM that reads the drive magnetization.

Hard Drive Bad Sectors

• Bad sectors are sectors on the HDD that can not be used due to
permanent damage or the OS inability to successfully access these
sectors.

• Physical disk surface damage results in sectors being stuck in a
magnetic or digital state that can not be reversed. Programs have
the ability to mark these sectors so the OS skips them in the future.

• The FW of the disk controller remaps logical bad sectors to a
different sectors.

• Two types of remapping of bad sectors: One the P-List done by the
factor and two the G-List done by the HDD microcode. A variety of
program exist to read the HDD SMART information displaying how
many sectors are reallocated and how many spare sectors on the
disk surface.

• Bad sectors are caused by: one platter surface is failing, two
corruption by the track data, three Read/Write heads are failing, and
four system area is damaged from bad translation of the recorded
medium.

Boot Sector

• Boot sectors or boot block is a sector on the HDD containing code for
booting programs, and OS stored in other parts of the disk.

• The BIOS selects the boot device, it copies the first sector MBR, VBR or
any executable code to the address location 0x7C00.

• Boot sectors describes special kinds of programs executed by the computer
system immediately after power up or reset. The programs are stored in
non-volatile memory such as Flash ROM.

• Boot block is the first program executed by the CPU, Flash ROM or NOR
Flash, that have dedicated sectors that store the boot programs.

• Boot sectors refers to dedicated hardware type of sectors. The sectors have
an extra level of protection to guard against accidental erase and overwrite
to avoid scenarios when the system completely fails to boot at the beginning
of the boot sequence.

• Boot Blocks stored in Flash ROM have a size from 1kiB to 512kiB which
performs extra hardware initialization, minimal hardware test, and checks
for sophisticated boot loaders, OS loader or other programs that can be
executed at start up.

Boot Sector

• Award BIOS and AMI BIOS have a dedicated area about 8kiB called
a boot block which start first, checks if the main BIOS are present
then either starts the main BIOS or enters into a special recovery
mode which can recovery the main BIOS from a floppy disk or other
media. Other systems depending on their design may have a similar
software called Boot Block.

• Boot block refers to the same program as the boot loader. There are
no rules to define what should be called a boot block or what should
be called a boot loader.

• Generally small and simple exercitation of the boot program are
referred to as boot blocks and more sophisticated boot programs are
referred to as boot loaders.

• Some ROM based system initialize their programs stored in memory
using a boot ROM instead.

• There are several major types of boot sectors that can be
encountered on storage devices

Boot Sector

• Master boot record MBR is the first sector on the HDD
that has been partitioned. The MBR sector contains code
to locate the active partition and execute the volume
boot record.

• Volume boot record VBR is the first sector on the HDD
that has not been partitioned or the first sector of an
individual partition on a HDD that has been partitioned. It
contains code to execute the OS, or stand alone
programs installed on the HDD within the partition.

• To be a valid boot sector the two byte hex word 0xAA55
called the boot sector signature must be present at the
end of the sector. Otherwise the BIOS or MBR code will
report an error message and stop bootstrapping process.

Boot Sector

• CD ROM have their own structure for boot sectors, for
IBM PC compatible systems the structure is subject to El
Torito specifications.

• Non-IBM compatible system may have different boot
sector formats on their disk devices.

• Boot sector term does not refer to a special type of NOR
or Flash ROM sectors that is intended to store the initial
boot programs. Boot sectors in Flash ROM are often
implemented with extra protection to avoid accidental
erase and over write to the boot block program.

• Boot sectors on a disk device are physical properties of
sectors storing boot programs and have the same
properties as the other sectors.

Boot Sector

• The BIOS are ignorant to the distinction between VBR,
MBR and partitioning. The FW loads and runs the frist
sector on the HDD.

• VBR are first sectors on floppy or USB flash drive. MBR
is first sector on HDD.

• The code in the MBR understand the disk formatting and
partitioning and is responsible for loading and running
the VBR where the primary partition is set to boot. The
VBR loads a second stage boot loader from another
location on the disk.

• Whatever is stored in the first sector is not required to
immediately load any bootstrap code fro the OS. The
BIOS passes control as long as the sector meets the
qualification signature of 0xAA55 in the last two bytes.

Master Boot Record

• The MBR is created when the first partition on the HDD
is created. The MBR is the most important data structure
on the HDD. The MBR is the first sector on every disk.
The location is always track and cylinder 0,side and
head 0 and sector 1

• MBR contains the partition table for the disk and a small
amount of executable code.

• Executable code examines the partition table and
identifies the system partition.

• The MBR finds the system partition starting location on
the disk and loads copy of the partition boot sector into
memory.

• The MBR transfers ownership to executable code in the
partition table boot sector.

Master Boot Record

• The HEX dump of the MBR shows the
sector is in two parts.

• The first part of the MBR which occupies
the first 446 bytes of the sector. The disk
signature (FD 4E F2 14) is at the end of
the MBR code.

• The second part of the MBR is the
partition table. Physical Sector: Cyl 0, Side
0, Sector 1

Volume Boot Record

• VBR known as volume boot sector, partition boot record
or partition boot sector is a boot sector introduced by
IBM PC.

• VBR are found on a partitioned data storage device such
as HDD, or un-partitioned data storage device such as
floppy and CD-ROM. The VBR contains the code for
bootstrapping programs stored in other parts of the
device.

• Non-partitioned storage devices it is the first sector on
the device.

• Partitioned storage devices first sector on an individual
partition where the first sector is the MBR.

Volume Boot Record

• The code in the VBR is invoked either by the machine’s
FW or code stored directly in the MBR. Code in VBR and
MBR is loaded the same way.

• Invoking a VBR from boot manager is known as chain
loading.

• Some dual boot process system like NTLDR take copies
of the bootstrap code that individual OS install into a
single partition VBR and store them in disk files loading
the VBR from file after the boot loader has determined
OS bootstrap.

• In file system FAT and NTSF the VBR contains a BOS
parameter block which specifies the location and layout
of the disk data structure for the file system

BIOS Parameter Block

• BPR is the data structure in the VBR describing the
physical layout of a data storage volume.

• Partitioned devices the BPB describes the volume
partition

• Un-partitioned devices the BPB describes the entire
medium

• Basic BPB appear and used on any partition – certain
file systems also make use of the BPB to describe basic
file system structures

• File systems making use of the BIOS parameter block
include FAT16, FAT32, HPFS and NTSF – due to the
different types of fields and amount of data they contain
the length of the BPB is different for each file system

FAT File System

• FAT file allocation table organize the file system on the
disk

• The table stores information about files on the HDD in
the form of sequences and numbers defining where each
part of each file is located.

• The first FAT as 12 digits and worked with diskettes and
logic disks in volume no more than 16 MB.

• In MS-DOS version 3.0 FAT tables became 16 digits in
order to support larger capacity disks.

• Disk volumes of 2 047 GBytes FAT 32 Bit tables are
used.

• Data structures supported: Clusters, directories and file
allocation table.

Boot Sector FAT, Root Directory
and Files

• File tyui.jpg occupies
clusters 2, 3, and 4 – the
file size is 1,536 bytes = 3
clusters on the disk and
cluster 4 includes 136
bytes of slack space.

• File mes.doc occupies
clusters 5 and 6 – file size
is 980 bytes = 2 clusters
and has 44 bytes of slack
space in cluster 6

• Cluster 7, 8, and 9 are
un-allocated

Fat Clusters and Sectors

• A cluster is a group of consecutive sectors

• A sector is usually 512 B

• A cluster is 1, 2, 4, 8, 16, 32, or 64 sectors
that range from 512 B to 32 KB

• Each cluster has an address

• The first cluster has an address of 2

• There is no addressable cluster 0 or 1

FAT, Slack and Unallocated Space

• Clusters 3, 6, and 8 are
allocated; clusters 2, 4, 5,
7, and 9 are unallocated

• Clusters 6 and 8 are only
partially filled; the unused
portion is slack space

• File gary.txt:
– logical size is 1,034 bytes
– physical size is 2,048 bytes

(slack = 1,014 B)

• File hello.jpg:
– logical size is 3,973 bytes

• physical size is 4,096
bytes (slack = 123 B)

What is the First FAT Cluster

• The first cluster is Cluster 2
• Actual location of cluster 2 is different in FAT12/16 and FAT32
• Assume cluster size = 2,048 B (4 sectors)
• Assume that data area starts at sector 1224
• First sectors of data area are reserved for the Root Directory

– Size is established at boot time
• Cluster 2 starts after Root Directory
• Root directory is set at 32 sectors

– Occupies sectors 1,224-1,255
– Cluster 2 starts at sector 1,256
– Cluster 3 starts at sector 1,260

– Cluster 4 at 1,264...

FAT Boot Sector

• First sector of a FAT system is the boot
sector

– Contains most of the information with which to
determine

• the file system type, and

• size and location of data structures

• Boot sector format is different for
FAT12/16 and FAT32

FAT Boot Sectors Bytes 0-35

Bytes Purpose

0-2 Assembly code instructions to jump to boot code (mandatory in bootable partition_

3-10 OEM name in ASCII

11-12 Bytes per sector (512, 1024, 2048, or 4096)

13 Sectors per cluster (Must be a power of 2 and cluster size must be <=32 KB)

14-15 Size of reserved area, in sectors

16 Number of FATs (usually 2)

17-18 Maximum number of files in the root directory (FAT12/16; 0 for FAT32)

19-20 Number of sectors in the file system; if 2 B is not large enough, et to 0 and use 4B
value in bytes 32-35 below

21 Media type (0xf0=removable disk, 0xf8=fixed disk)

22-23 Size of each FAT, in sectors, for FAT12/16; 0 for FAT32

24-25 Sectors per track in storage device

26-27 Number of heads in storage device

28-31 Number of sectors before the start partition

32-35 Number of sectors in the file system; the field will be 0 if the 28 files above (bytes 19-
20) is non-zero

FAT Boot Sector (FAT12/16)

Bytes Purpose

0-35 See FAT Boot Sector Bytes 0-35

36 BIOS INT 13h (low level disk services) drive number

37 Not used

38 Extended boot signature to validate next three fields (0x29)

39-42 Volume serial number

43-53 Volume label, in ASCII

54-61 File system type level, in ASCII (Generally “FAT”, “FAT12” or
“FAT16”)

62-509 Not used

510-511 Signature value (0xaa55)

FAT12 Boot Sector

Boot Sector Interpretation

• 00-02: eb 3c 90 Instructions to jump to boot code
• 03-0a: 4d 53 44 4f 53 35 2e 30
• Name string (MSDOS5.0)
• 0b-0c: 00 02 Bytes/sector (0x0200 = 512)
• 0d : 01 Sectors/cluster (1)
• 0e-0f: 01 00 Size of reserved area (1 sector)
• 10 : 02 Number of FATs (2)
• 11-12: e0 00 Max. number of root directory entries (0x00e0 = 224)
• 13-14: 40 0b Total number of sectors (0x0b40 = 2,880)
• 15 : f0 Media type (removable)
• 16-17: 09 00 FAT size (0x0009 = 9 sectors)
• 18-19: 12 00 Sectors/track (0x0012 = 18)
• 1a-1b: 02 00 Number of heads (0x0002 = 2)
• 1c-1f: 00 00 00 00 Number of sector before partition (0)
• 20-23: 00 00 00 00 Total number of sectors (0 because 2B value not equal 0)
• 24 : 00 Drive number (0)
• 25 : 00 Unused
• 26 : 29 Extended boot signature
• 27-2a: cf cd b1 c4 Volume serial number (C4B1-CDCF)
• 2b-35: 4e 4f 20 4e 41 4d 45 20 20 20 20
• Volume label ("NO NAME ")
• 36-3d: 46 41 54 31 32 20 20 20
• File system type label ("FAT12 ")
• 3e-1fd : [snip] Not used
• 1fe-1ff: 55 aa Signature value (0xaa55)

FAT Capacity

• FAT12 allocates 12 bits per FAT entry
– Limits addressing to 4,096 (212) clusters

• This (removable) device is configured so that:
– 1 cluster = 1 sector
– 1 sector = 512 B

• This FAT12 table is limited in capacity to
2,097,152 bytes (2 MB)
– I.e., 4K clusters of 512 B each

• This device has 2,880 sectors
– 512 B clusters yields a device capacity of 1.44 MB

– Corresponds to what we would expect for a floppy

Sector Assignment

Sector Address Function

0 0x0000-0x1ff Boot Sector

1-9 0x0200-0x13ff File Allocation Table – primary

10-18 0x1400-0x25ff File allocation Table – secondary

19-32 0x2600-0x41ff Root Directory

33-2879 0x4200-0x167fff File storage space

• Boot Sector is 1 sector (0x200 bytes)
• There are two FATs, each 9 sectors (0x1200 bytes)
• The Root Directory can contain 224 entries, each 32 bytes (7168, or
0x1c00, bytes; 14 sectors)
• File storage starts at sector #33 (1+9+9+14), byte #0x4200
(0x200+0x1200+0x1200+0x1c00)

Root Directory

• Contains file names and metadata
– Located immediately after FAT(s) in FAT12/16 or in a

location specified in the FAT32 boot sector

• Supports 8.3 names or long file names

• New entries are added to the directory using a
first-available or next-available strategy
– First-available: Finds first unallocated entry in the

directory (e.g., Win98)

– Next-available: Finds next available entry from the
last allocated entry; at end of directory chain, start
again at beginning (e.g., WinXP

Root Directory Entries

• The Root Directory is a series of entries
describing files

• Each entry is 32 bytes and contains
– single short (8.3) filename (SFN),

– attributes,

– MAC times,

– start cluster,

– size,

– And other metadata.

– Additional 32B entries contain the file's long filename
(LFN)

Root Directory Entry Format SFN

Example Root Directory

Three files shown here:
BELIN_~1.JPG @ offset 0xff160 (belin_gayle.jpg entry starts @ offset 0xff140)
KESSLE~1.JPG @ offset 0xff1c0 (kessler_gary.jpg entry starts @ offset 0xff1a0)
?HUMBS.DB @ offset 0xff200 (Thumbs.db; deleted)

FAT Comparison Table

The NTFS File System

• The NTSF boot record is loaded in memory location 0000:7C00 by
the MBR code.

• The location 7C0Bh through 7C53h are filled with the NTSF BPB
• The next 303 bytes 7C54h through 7D82h contain sectors

executable code
• The main program and various subroutines load the N.T.L.D.R. or

Bootstrap sectors into memory
• The first 3 bytes are the Jump Instructions
• Only the first two bytes EB 52 have even been used to form the

actual JMP instructions.
• The third byte 90h is the NOP instruction
• The next 8 bytes are the OEM ID or system name followed by the

BPB
• The NTFS BPB has many fields in common with the FAT16 and

FAT32 boot records: Bytes per Sector, Sectors per Clusters and
others.

The NTFS File System

• The old Media Descriptor Byte F8 does not contain the
System ID or the Volume Label Fields.

• In the NTFS Media Descriptor byte there is a number of
system files: NTOSKRNL.EXE and BOOT.INI mentioned
in the code which follows the Initial Boot sector.

• The old 4-byte Volume Serial Number has been replaced
with a new eight-byte NTFS volume serial number

• The last 125 bytes of the Boot Records first sector
contain an Error message.

• The Message Offset bytes and the word-sized signature
ID of AA55h which is the HEX word for Intel 86x CPUs
are stored in memory with the lowest-byte first and
highest-byte last to make CPU processing quicker

The NTFS File System

• The six physical sectors directly following the NTFS Boot Sector contain the
code which interfaces with the NTLDR file in order to boot up the OS
partition

• Code execution is pass from the Boot Sector of a bootable NTFS volume to
offset A6h of the NTLDR Bootstrap code

• The bytes 8C and C8 comprise the first CPU instruction MOV, AX, CS, part
of the Bootstrap code stores intermediate calculations and data about the
partition.

• A JMP instruction at EB12 followed by 90 90 is a program execution and
always jumps directly into the offset sector at 69Ah from the NTFS boot
record

• The last sector of the Bootstrap code and the 7th sector of the entire NTFS
Boot record where the HEX offsets are stored that start the NTLDR section;
at 0D75h is the last byte of the code.

• The OS makes a backup copy of the NTFS VBR which is stored in the last
sector of the partition. The total sector count in the NBR/ERR partition table
is always 1 sector more than the total sectors in the volume count found in
the boot record.

NTFS $Boot Sectors

• Windows 2000 and XP boot record contains a single sector plus the
Bootstrap code consisting of seven sectors.

• All 16 sectors of the NTFS boot record area that are loaded into
memory

• The first 16 bytes are the $Boot that occupy cluster 0 through 1 on
systems with 8 sector clusters

• The 2nd sectors always begins with the 16 HEX byte Unicode for the
5 character NTLDR

• 3rd through 6th sectors have no outstanding features
• 7th sectors end with 138 zero byte
• Newly formatted NTFS volume $Boot is immediately followed by the

$MFT that contains a number of sectors of FF bytes which are part
of the $Bitmap, NTSF volumes contains Metadata system files in the
middle of the partition. $MFTMirr is the backup copy of the first four
$MFT and $LogFile records.

NTFS $Boot Sectors

• Each file in he NTFS volume is
represented by a record that
resides in the MFT

• NTFS reserves they first 16
records of the table for special
information

• The 1st records describes the
MFT

• The mirror records follows

• If the 1st record is corrupted
MFT reads the 2nd records to
find the MFT mirror file which
record is identical to the 1st

record in the MFT

NTFS $Boot Sectors

• The location for the data segments for both the MFT and the MFT mirror file
are recorded in the boot sector.

• A duplicate boot sector is located at the logical center of the disk
• 3rd record of the MFT is the log file used for file recovery
• 17th record of the MFT are for each file and directory also view by the NTFS

on the volume
• The MFT allocates a certain amount of space for each file record
• The attributes of the file are written to the allocated space in the MFT
• Small files and directories 1500 bytes or small can entirely be contained

within the MFT
• Directory records are housed within the MFT just like file records.
• Instead of data, directories contain index information
• Small directory records reside entirely within the MFT structure
• Large directories are organized into B-trees having records with pointers to

external clusters containing directory entries that could not be contained
within the MFT structure

NTFS File Attributes

• The NTFS file system views each file and folder as a set of file
attributes.

• Elements include file name, security information, and data
• Each attribute is identified by an attribute type code and an attribute

name
• Resident attributes are file attributes that fit within the MFT file

record
• Information like filename and time stamp is always included in the

MFT file record
• When files are too large to fit into the MFT file record the attributes

are non-resident
• Non-resident attributes are allocated one or more clusters of disk

space somewhere in the volume
• NTFS creates the attribute list attribute to describe the location of all

the attribute records

NTFS File Attributes
Attribute Type Description

Standard Information Includes information such as timestamp and link count

Attribute List List the location of all attribute records that do not fit in the MFT record

File Name A repeatable attribute for both long and short file names. The long name of the file can be up
to 255 Unicode characters. The short name is the 8.3 case insensitive names for the file

Security Descriptor Describes who owns the file and who can access it

Data Contains file data. NTFS allows multiple data attributers per file Each file typically has one
unnamed data attribute

Object ID A Volume unique file identifier. Used by the distributed link tracking service. Not all files have
object identifiers

Logged Tool Stream Similar to a data stream, but operations are logged to the NTFS log file just like NTFS
metadata changes. This is used by EFS

Reparse Point Used for volume mount points. They are also used by Installable File Systems filter drivers to
mark certain files as special to that driver

Index Root Used to implement folders and other indexes

Index Allocation Used to implement folders and other indexes

Bit map Used to implement folders and other indexes

Volume Information Used only in the #Volume system file. Contains the volume version

Volume Name Used only in the $Volume system file. Contains the volume label

NTFS System Files

• NTFS includes several system files
• All are hidden from view on the NTFS volume
• A system file is one used by the file system to store its metadata and to implement the file

system
• System files are places on the volume by the format utility
1. Master File table - $MFT contains one base file record for each file and folder on the NTFS

volume.
2. Master File Table 2 - $MftMirr is a duplicate image of the first four records of the MFT
3. Log File - $LogFile contains a list of transaction steps used for NTFS recoverability
4. Volume - $Volume contains information about the volume such as the volume label and the

volume versin
5. Attribute definitions - $AttrDef is the table of attribute names, numbers, and descriptions
6. Root file index name - $ is the root folder
7. Cluster bitmap - $Bitmap is a representation of the volume showing which cluster are in use
8. Boot sector - $Boot includes the BPB used to mount the volume and additional bootstrap

loader code used in the volume bootable
9. Bad cluster file - $BadClus contains bad clusters for the volume
10. Security file - $Secure contains unique security descriptions for all files within a volume
11. Up case table - $Upcase converts lower case characters to matching Unicode uppercase

characters
12. NTFS extension file - $Extend used for various optional extensions such as quotas, reparse

point data, and object identifiers

NTFS Multiple Data Stream

• NTFS supports multiple data streams; the stream name identifies a new data attribute
on the file

• Data streams are unique sets of file attributes
• Data streams have separate opportunistic locks, file locks, and sized but common

permission
• This feature enables you to manage data as a single unit: myfile.dat:stream2

• A library of files can exist where the files are defined as alternate streams:
• library:file1
• :file2
• :file3

• A file can be associated with more than one application at a time
• program:source_file
• :doc_file
• :object_file
• :executable_file
• When you copy an NTFS file to a FAT Volume such as a floppy disk data streams

and other attributes not supported by FAT are lost

NTFS Compressed Files

• File compressed on an NTFS volume can be read and
written by any Windows-based application without first
being decompressed by another program

• Decompression occurs automatically when the file is
read.

• The file is compressed again when it is closed or saved

• The compression algorithms in NTFS are designed to
support cluster sized up to 4 KB

• Sizes larger than 4 KB on the NTFS volume
compression function are not available

• Each NTFS data stream contains information that
indicates wheather any part of the stream is compressed

EFS Encrypting File System

• The EFS provides the core file encryption technology used to store
encrypted files on NTFS volumes.

• Users work with files and folders just like they would with any file not
encrypted

• The system automatically decrypts the files or folders when access
is requested

• When file is saved it is encrypted again
• EFS features are invokes through Windows Explorer or by

command line utility cipher.exe
• EFS uses symmetric key encryption in combination with public key

technology to protect files
• File data is encrypted with symmetric algorithm DESX
• The key used is File Encryption Key FEK which is encrypted with a

public and private key algorithm RSA and stored along with the file

EFS Encrypting File System

• Encrypted file NTFS creates a log file
Efs0.log in system volume information
folder as the encrypted file. EFS uses
a 1024-bit RSA algorithm to encrypt
FEK

• EFS created Data Decryption Field
DDF for the current user when it
places the FEK and encrypts it with
the public key

• If recovery agent is defined by the
system policy EFS creates a Data
Recovery Field DRF and places it with
the FEK encrypted with public key for
the recover agent

• A separate DRA is created for every
recovery agent defined

• Temporary file Efs0.tmp is created
when the file is being encrypted. Once
encrypted the original file is over
written and the temporary file is
deleted.

$EFS Attribute

• When NTFS encrypts a
file, it sets a flag
Encrypted (0x4000) for
the file and creates an
$EFS attribute for the file
where it stores the DDFs
and DDRs. The attribute
has an Attribute ID =
0x100 in NTFS and can
be lengthy, occupying
from 0.5K to several
kilobytes depending on
number of DDFs and
DRFs

NTFS Boot Sector

Byte Offset Field Length Filed Name

0x00 3 bytes Jump Instruction

0x03 LONGLONG OEM ID

0x08 25 bytes BPB

0x24 48 bytes Extended BPB

0x54 426 bytes Bootstrap Code

0x01FE WORD End of Sector
Marker

NTFS Boot Sector

• NTFS Volume the data fields that follow the BPB form an
extended BPB

• Data in the fields enables the Ntldr to find the MFT
during start up

• MFT are not located in a predefined sector
• A boot sector in a NTFS volume formatted looks like:

• Bytes 0x00- 0x0A are the jump instruction and the OEM
ID (shown in bold print).

• Bytes 0x0B-0x53 are the BPB and the extended BPB.
• The remaining code is the bootstrap code and the end of

sector marker (shown in bold print).

HFS File System
Feature HFS HFS Plus Benefit/Comment

User visible
name

Mac OS Standard Mac OS Extended

Number of
allocated blocks

16 bits worth 32 bits worth Radical decrease in disk space used
on large volumes, and a larger
number of files per volume

Long file name 31 characters 255 characters Obvious user benefit; also improves
cross-platform compatibility

File name
encoding

Mac Roman Unicode Allows for international-friendly file
names including mixed script names

File/folder
attributes

Support for fixed size
attributes File Info
and Extended Field
Info

Allows for future
metadata
extensions

Future systems may use metadata for
a richer finder experience

OS start-up
support

System Folder ID Also supports a
dedicated start up
file

May help non-Mac OS systems to
boot from HFS Plus volumes

Catalog node
size

512 bytes 4 Kb Maintains efficiency in the face of the
other changes and larger catalog
records

Maximum file
size

231 bytes 263 bytes Obvious user benefit especially for
multimedia content creators

HFS Terminology

• Most of the data structures on an HFS Plus volume do not depend on the
size of a sector with the exception of the journal

• Journals relay on accessing individual sectors the sector size is stored in
the jhdr_size field of the journal header

• HFS allocates space in units called allocation block
• Allocation blocks are a group of consecutive bytes
• The size in bytes of an allocation block is a power of two greater than or

equal to 512 which is set when the volume is initialized
• Allocation blocks are identified by a 32-bit allocation block number
• There can be 232 allocation blocks on a volume
• Current implementation of the file system are optimized for 4K allocation

blocks
• All of the volume structure including the volume header are part of one or

more allocation blocks
• To avoid fragmentation disk space is typically allocated to files in groups of

allocation blocks or clumps
• Clumps are multiples of allocation block size

HFS Terminology

• HFS Plus volume must have a volume header which contains information
about the volume: date, time, volume creation and number of files on the
volume

• Volume header is located at 1024 bytes from the start of the volume
• Alternate volume header is stored starting at 1024 bytes before the end of

the volume
• The first 1024 bytes of volume before volume header and the last 512 bytes

after the alternate volume header are reserved
• All allocation blocks containing the volume header and alternate volume

header are marked as used in the allocation file.
• The actual number of allocation blocks marked this way depends on the

allocation block size
• HFS Plus volume contains 5 special files that store the file system

structures required to access the file system payload, folders, user files and
attributes

• The special files are catalog file, extents overflow file, allocation file,
attributes file and start up file

HFS Terminology

• Catalog file describes the folder and file hierarchy on a
volume

• Attributes file contain additional data for a file or folder
• Extent is a range of allocation blocks allocated to some

fork represented by a pair of numbers – the first eight
extents of each fork are stored in the volume catalog file
and additional extents are stored in the extents overflow
file

• Allocation files specifies whether an allocation block is
used or free and performs the same role as the HFS
volume bitmap

• Bad block file prevents the volume from using certain
allocation blocks because the portion of the media that
stores those blocks is defective – it is neither a special
file or user file

Recommended Logical Recovery
Programs

• Active Partition Recovery: http://www.partition-recovery.com/
• Acronis Migrate Easy:

http://www.acronis.com/homecomputing/products/migrateeasy/index.html
• Acronis Disk Director Suit: http://www.acronis.com/homecomputing/products/diskdirector/
• Active Partition and File Recovery: http://www.partition-recovery.com/
• Active File Recovery: http://www.file-recovery.net/
• Get Data Back NTSF: http://www.runtime.org/data-recovery-software.htm
• Get Data Back FAT: http://www.runtime.org/data-recovery-software.htm
• RStudio: http://rstudio.org/
• File Scavenger: http://www.quetek.com/prod02.htm
• MHDD: http://hddguru.com/software/2005.10.02-MHDD/mhdd_manual.en.html
• Victoria: http://www.freenew.net/windows/victoria-hdd-utility-43/30961.htm
• Doc Regenerator: http://www.doc-regenerator.com-http.com/
• Partition Find and Mount: http://findandmount.com/
• Partition Table Doctor: http://www.ptdd.com/
• RAID Reconstruction: http://www.runtime.org/raid.htm
• USF Explorer: http://www.ufsexplorer.com/
• XLS Regenerator: http://xls-regenerator.en.softonic.com/
• WinHex: http://x-ways.net/winhex/
• Test Disk: http://www.cgsecurity.org/wiki/TestDisk

